Expression
- class hail.expr.Expression[source]
Base class for Hail expressions.
Attributes
The data type of the expression.
Methods
Collect all records of an expression into a local list.
Print information about type, index, and dependencies.
Export a field to a text file.
Print the first few records of the expression to the console.
Compute and print summary information about the expression.
Collect the first n records of an expression.
- __eq__(other)[source]
Returns
True
if the two expressions are equal.Examples
>>> x = hl.literal(5) >>> y = hl.literal(5) >>> z = hl.literal(1)
>>> hl.eval(x == y) True
>>> hl.eval(x == z) False
Notes
This method will fail with an error if the two expressions are not of comparable types.
- Parameters:
other (
Expression
) – Expression for equality comparison.- Returns:
BooleanExpression
–True
if the two expressions are equal.
- __ne__(other)[source]
Returns
True
if the two expressions are not equal.Examples
>>> x = hl.literal(5) >>> y = hl.literal(5) >>> z = hl.literal(1)
>>> hl.eval(x != y) False
>>> hl.eval(x != z) True
Notes
This method will fail with an error if the two expressions are not of comparable types.
- Parameters:
other (
Expression
) – Expression for inequality comparison.- Returns:
BooleanExpression
–True
if the two expressions are not equal.
- collect(_localize=True)[source]
Collect all records of an expression into a local list.
Examples
Collect all the values from C1:
>>> table1.C1.collect() [2, 2, 10, 11]
Warning
Extremely experimental.
Warning
The list of records may be very large.
- Returns:
- describe(handler=<built-in function print>)[source]
Print information about type, index, and dependencies.
- export(path, delimiter='\t', missing='NA', header=True)[source]
Export a field to a text file.
Examples
>>> small_mt.GT.export('output/gt.tsv') >>> with open('output/gt.tsv', 'r') as f: ... for line in f: ... print(line, end='') locus alleles 0 1 2 3 1:1 ["A","C"] 0/1 0/0 0/1 0/0 1:2 ["A","C"] 1/1 0/1 0/1 0/1 1:3 ["A","C"] 0/0 0/1 0/0 0/0 1:4 ["A","C"] 0/1 1/1 0/1 0/1
>>> small_mt.GT.export('output/gt-no-header.tsv', header=False) >>> with open('output/gt-no-header.tsv', 'r') as f: ... for line in f: ... print(line, end='') 1:1 ["A","C"] 0/1 0/0 0/1 0/0 1:2 ["A","C"] 1/1 0/1 0/1 0/1 1:3 ["A","C"] 0/0 0/1 0/0 0/0 1:4 ["A","C"] 0/1 1/1 0/1 0/1
>>> small_mt.pop.export('output/pops.tsv') >>> with open('output/pops.tsv', 'r') as f: ... for line in f: ... print(line, end='') sample_idx pop 0 1 1 2 2 2 3 2
>>> small_mt.ancestral_af.export('output/ancestral_af.tsv') >>> with open('output/ancestral_af.tsv', 'r') as f: ... for line in f: ... print(line, end='') locus alleles ancestral_af 1:1 ["A","C"] 3.8152e-01 1:2 ["A","C"] 7.0588e-01 1:3 ["A","C"] 4.9991e-01 1:4 ["A","C"] 3.9616e-01
>>> small_mt.bn.export('output/bn.tsv') >>> with open('output/bn.tsv', 'r') as f: ... for line in f: ... print(line, end='') bn {"n_populations":3,"n_samples":4,"n_variants":4,"n_partitions":4,"pop_dist":[1,1,1],"fst":[0.1,0.1,0.1],"mixture":false}
Notes
For entry-indexed expressions, if there is one column key field, the result of calling
str()
on that field is used as the column header. Otherwise, each compound column key is converted to JSON and used as a column header. For example:>>> small_mt = small_mt.key_cols_by(s=small_mt.sample_idx, family='fam1') >>> small_mt.GT.export('output/gt-no-header.tsv') >>> with open('output/gt-no-header.tsv', 'r') as f: ... for line in f: ... print(line, end='') locus alleles {"s":0,"family":"fam1"} {"s":1,"family":"fam1"} {"s":2,"family":"fam1"} {"s":3,"family":"fam1"} 1:1 ["A","C"] 0/1 0/0 0/1 0/0 1:2 ["A","C"] 1/1 0/1 0/1 0/1 1:3 ["A","C"] 0/0 0/1 0/0 0/0 1:4 ["A","C"] 0/1 1/1 0/1 0/1
- show(n=None, width=None, truncate=None, types=True, handler=None, n_rows=None, n_cols=None)[source]
Print the first few records of the expression to the console.
If the expression refers to a value on a keyed axis of a table or matrix table, then the accompanying keys will be shown along with the records.
Examples
>>> table1.SEX.show() +-------+-----+ | ID | SEX | +-------+-----+ | int32 | str | +-------+-----+ | 1 | "M" | | 2 | "M" | | 3 | "F" | | 4 | "F" | +-------+-----+
>>> hl.literal(123).show() +--------+ | <expr> | +--------+ | int32 | +--------+ | 123 | +--------+
Notes
The output can be passed piped to another output source using the handler argument:
>>> ht.foo.show(handler=lambda x: logging.info(x))
- Parameters: