Random functions
Hail has several functions that generate random values when invoked. The values are seeded when the function is called, so calling a random Hail function and then using it several times in the same expression will yield the same result each time.
Evaluating the same expression will yield the same value every time, but multiple
calls of the same function will have different results. For example, let x be
a random number generated with the function rand_unif()
:
>>> x = hl.rand_unif(0, 1)
The value of x will not change, although other calls to rand_unif()
will generate different values:
>>> hl.eval(x)
0.9828239225846387
>>> hl.eval(x)
0.9828239225846387
>>> hl.eval(hl.rand_unif(0, 1))
0.49094525115847415
>>> hl.eval(hl.rand_unif(0, 1))
0.3972543766997359
>>> hl.eval(hl.array([x, x, x]))
[0.9828239225846387, 0.9828239225846387, 0.9828239225846387]
If the three values in the last expression should be distinct, three separate
calls to rand_unif()
should be made:
>>> a = hl.rand_unif(0, 1)
>>> b = hl.rand_unif(0, 1)
>>> c = hl.rand_unif(0, 1)
>>> hl.eval(hl.array([a, b, c]))
[0.992090957001768, 0.9564448098124774, 0.3905029525642664]
Within the rows of a Table
, the same expression will yield a
consistent value within each row, but different (random) values across rows:
>>> table = hl.utils.range_table(5, 1)
>>> table = table.annotate(x1=x, x2=x, rand=hl.rand_unif(0, 1))
>>> table.show()
+-------+----------+----------+----------+
| idx | x1 | x2 | rand |
+-------+----------+----------+----------+
| int32 | float64 | float64 | float64 |
+-------+----------+----------+----------+
| 0 | 4.68e-01 | 4.68e-01 | 6.36e-01 |
| 1 | 8.24e-01 | 8.24e-01 | 9.72e-01 |
| 2 | 7.33e-01 | 7.33e-01 | 1.43e-01 |
| 3 | 8.99e-01 | 8.99e-01 | 5.52e-01 |
| 4 | 4.03e-01 | 4.03e-01 | 3.50e-01 |
+-------+----------+----------+----------+
The same is true of the rows, columns, and entries of a MatrixTable
.
Setting a seed
All random functions can take a specified seed as an argument. This guarantees that multiple invocations of the same function within the same context will return the same result, e.g.
>>> hl.eval(hl.rand_unif(0, 1, seed=0))
0.2664972565962568
>>> hl.eval(hl.rand_unif(0, 1, seed=0))
0.2664972565962568
>>> table = hl.utils.range_table(5, 1).annotate(x=hl.rand_unif(0, 1, seed=0))
>>> table.x.collect()
[0.5820244750020055,
0.33150686392731943,
0.20526631289173847,
0.6964416913998893,
0.6092952493383876]
>>> table = hl.utils.range_table(5, 5).annotate(x=hl.rand_unif(0, 1, seed=0))
>>> table.x.collect()
[0.5820244750020055,
0.33150686392731943,
0.20526631289173847,
0.6964416913998893,
0.6092952493383876]
However, moving it to a sufficiently different context will produce different results:
>>> table = hl.utils.range_table(7, 1)
>>> table = table.filter(table.idx >= 2).annotate(x=hl.rand_unif(0, 1, seed=0))
>>> table.x.collect()
[0.20526631289173847,
0.6964416913998893,
0.6092952493383876,
0.6404026938964441,
0.5550464170615771]
In fact, in this case we are getting the tail of
>>> table = hl.utils.range_table(7, 1).annotate(x=hl.rand_unif(0, 1, seed=0))
>>> table.x.collect()
[0.5820244750020055,
0.33150686392731943,
0.20526631289173847,
0.6964416913998893,
0.6092952493383876,
0.6404026938964441,
0.5550464170615771]
Reproducibility across sessions
The values of a random function are fully determined by three things:
The seed set on the function itself. If not specified, these are simply generated sequentially.
Some data uniquely identifying the current position within a larger context, e.g. Table, MatrixTable, or array. For instance, in a
range_table()
, this data is simply the row id, as suggested by the previous examples.The global seed. This is fixed for the entire session, and can only be set using the
global_seed
argument toinit()
.
To ensure reproducibility within a single hail session, it suffices to either
manually set the seed on every random function call, or to call
reset_global_randomness()
at the start of a pipeline, which resets the
counter used to generate seeds.
>>> hl.reset_global_randomness()
>>> hl.eval(hl.array([hl.rand_unif(0, 1), hl.rand_unif(0, 1)]))
[0.9828239225846387, 0.49094525115847415]
>>> hl.reset_global_randomness()
>>> hl.eval(hl.array([hl.rand_unif(0, 1), hl.rand_unif(0, 1)]))
[0.9828239225846387, 0.49094525115847415]
To ensure reproducibility across sessions, one must in addition specify the
global_seed in init()
. If not specified, the global seed is chosen
randomly. All documentation examples were computed using global_seed=0
.
>>> hl.stop()
>>> hl.init(global_seed=0)
>>> hl.eval(hl.array([hl.rand_unif(0, 1), hl.rand_unif(0, 1)]))
[0.9828239225846387, 0.49094525115847415]
|
Returns |
|
Samples from a beta distribution with parameters a (alpha) and b (beta). |
|
Samples from a categorical distribution. |
|
Samples from a Dirichlet distribution. |
|
Samples from a gamma distribution with parameters shape and scale. |
|
Samples from a normal distribution with mean mean and standard deviation sd. |
|
Samples from a Poisson distribution with rate parameter lamb. |
|
Samples from a uniform distribution within the interval [lower, upper]. |
|
Samples from a uniform distribution of 32-bit integers. |
|
Samples from a uniform distribution of 64-bit integers. |
|
Randomly permute an array |
- hail.expr.functions.rand_bool(p, seed=None)[source]
Returns
True
with probability p.Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_bool(0.5)) False
>>> hl.eval(hl.rand_bool(0.5)) True
- Parameters:
p (
float
orFloat64Expression
) – Probability between 0 and 1.seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.rand_beta(a, b, lower=None, upper=None, seed=None)[source]
Samples from a beta distribution with parameters a (alpha) and b (beta).
Notes
The optional parameters lower and upper represent a truncated beta distribution with parameters a and b and support [lower, upper]. Draws are made via rejection sampling, i.e. returning the first draw from Beta(a,b) that falls in range [lower, upper]. This procedure may be slow if the probability mass of Beta(a,b) over [lower, upper] is small.
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_beta(0.5, 0.5)) 0.30607924177641355
>>> hl.eval(hl.rand_beta(2, 5)) 0.1103872607301062
- Parameters:
a (
float
orFloat64Expression
)b (
float
orFloat64Expression
)lower (
float
orFloat64Expression
, optional) – Lower boundary of truncated beta distribution.upper (
float
orFloat64Expression
, optional) – Upper boundary of truncated beta distribution.seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.rand_cat(prob, seed=None)[source]
Samples from a categorical distribution.
Notes
The categories correspond to the indices of prob, an unnormalized probability mass function. The probability of drawing index
i
isprob[i]/sum(prob)
.Warning
This function may be slow when the number of categories is large.
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_cat([0, 1.7, 2])) 2
>>> hl.eval(hl.rand_cat([0, 1.7, 2])) 2
- Parameters:
prob (
list
of float orArrayExpression
of typetfloat64
)seed (
int
or None) – If not None, function will be seeded with provided seed.
- Returns:
- hail.expr.functions.rand_dirichlet(a, seed=None)[source]
Samples from a Dirichlet distribution.
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_dirichlet([1, 1, 1])) [0.6987619676833735, 0.287566556865261, 0.013671475451365567]
>>> hl.eval(hl.rand_dirichlet([1, 1, 1])) [0.16299928555608242, 0.04393664153526524, 0.7930640729086523]
- Parameters:
a (
list
of float orArrayExpression
of typetfloat64
) – Array of non-negative concentration parameters.seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.rand_gamma(shape, scale, seed=None)[source]
Samples from a gamma distribution with parameters shape and scale.
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_gamma(1, 1)) 3.115449479063202
>>> hl.eval(hl.rand_gamma(1, 1)) 3.077698059931638
- Parameters:
shape (
float
orFloat64Expression
)scale (
float
orFloat64Expression
)seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.rand_norm(mean=0, sd=1, seed=None, size=None)[source]
Samples from a normal distribution with mean mean and standard deviation sd.
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_norm()) 0.347110923255205
>>> hl.eval(hl.rand_norm()) -0.9281375348070483
- Parameters:
mean (
float
orFloat64Expression
) – Mean of normal distribution.sd (float or
Expression
of typetfloat64
) – Standard deviation of normal distribution.seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.rand_pois(lamb, seed=None)[source]
Samples from a Poisson distribution with rate parameter lamb.
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_pois(1)) 4.0
>>> hl.eval(hl.rand_pois(1)) 4.0
- Parameters:
lamb (
float
orFloat64Expression
) – Rate parameter for Poisson distribution.seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.rand_unif(lower=0.0, upper=1.0, seed=None, size=None)[source]
Samples from a uniform distribution within the interval [lower, upper].
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_unif()) 0.9828239225846387
>>> hl.eval(hl.rand_unif(0, 1)) 0.49094525115847415
>>> hl.eval(hl.rand_unif(0, 1)) 0.3972543766997359
- Parameters:
lower (
float
orFloat64Expression
) – Left boundary of range. Defaults to 0.0.upper (
float
orFloat64Expression
) – Right boundary of range. Defaults to 1.0.seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.rand_int32(a, b=None, *, seed=None)[source]
Samples from a uniform distribution of 32-bit integers.
If b is None, samples from the uniform distribution over [0, a). Otherwise, sample from the uniform distribution over [a, b).
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_int32(10)) 9
>>> hl.eval(hl.rand_int32(10, 15)) 14
>>> hl.eval(hl.rand_int32(10, 15)) 12
- Parameters:
a (
int
orInt32Expression
) – If b is None, the right boundary of the range; otherwise, the left boundary of range.b (
int
orInt32Expression
) – If specified, the right boundary of the range.seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.rand_int64(a=None, b=None, *, seed=None)[source]
Samples from a uniform distribution of 64-bit integers.
If a and b are both specified, samples from the uniform distribution over [a, b). If b is None, samples from the uniform distribution over [0, a). If both a and b are None samples from the uniform distribution over all 64-bit integers.
Examples
>>> hl.reset_global_randomness() >>> hl.eval(hl.rand_int64(10)) 9
>>> hl.eval(hl.rand_int64(1 << 33, 1 << 35)) 33089740109
>>> hl.eval(hl.rand_int64(1 << 33, 1 << 35)) 18195458570
- Parameters:
a (
int
orInt64Expression
) – If b is None, the right boundary of the range; otherwise, the left boundary of range.b (
int
orInt64Expression
) – If specified, the right boundary of the range.seed (
int
, optional) – Random seed.
- Returns:
- hail.expr.functions.shuffle(a, seed=None)[source]
Randomly permute an array
Example
>>> hl.reset_global_randomness() >>> hl.eval(hl.shuffle(hl.range(5))) [4, 0, 2, 1, 3]
- Parameters:
a (
ArrayExpression
) – Array to permute.seed (
int
, optional) – Random seed.
- Returns: