Source code for hail.experimental.ldscore

import hail as hl
from hail.expr.expressions import expr_float64, expr_locus, expr_numeric
from hail.linalg import BlockMatrix
from hail.table import Table
from hail.typecheck import nullable, oneof, sequenceof, typecheck
from hail.utils import new_temp_file, wrap_to_list


[docs]@typecheck( entry_expr=expr_float64, locus_expr=expr_locus(), radius=oneof(int, float), coord_expr=nullable(expr_float64), annotation_exprs=nullable(oneof(expr_numeric, sequenceof(expr_numeric))), block_size=nullable(int), ) def ld_score(entry_expr, locus_expr, radius, coord_expr=None, annotation_exprs=None, block_size=None) -> Table: """Calculate LD scores. Example ------- >>> # Load genetic data into MatrixTable >>> mt = hl.import_plink(bed='data/ldsc.bed', ... bim='data/ldsc.bim', ... fam='data/ldsc.fam') >>> # Create locus-keyed Table with numeric variant annotations >>> ht = hl.import_table('data/ldsc.annot', ... types={'BP': hl.tint, ... 'binary': hl.tfloat, ... 'continuous': hl.tfloat}) >>> ht = ht.annotate(locus=hl.locus(ht.CHR, ht.BP)) >>> ht = ht.key_by('locus') >>> # Annotate MatrixTable with external annotations >>> mt = mt.annotate_rows(binary_annotation=ht[mt.locus].binary, ... continuous_annotation=ht[mt.locus].continuous) >>> # Calculate LD scores using centimorgan coordinates >>> ht_scores = hl.experimental.ld_score(entry_expr=mt.GT.n_alt_alleles(), ... locus_expr=mt.locus, ... radius=1.0, ... coord_expr=mt.cm_position, ... annotation_exprs=[mt.binary_annotation, ... mt.continuous_annotation]) >>> # Show results >>> ht_scores.show(3) .. code-block:: text +---------------+-------------------+-----------------------+-------------+ | locus | binary_annotation | continuous_annotation | univariate | +---------------+-------------------+-----------------------+-------------+ | locus<GRCh37> | float64 | float64 | float64 | +---------------+-------------------+-----------------------+-------------+ | 20:82079 | 1.15183e+00 | 7.30145e+01 | 1.60117e+00 | | 20:103517 | 2.04604e+00 | 2.75392e+02 | 4.69239e+00 | | 20:108286 | 2.06585e+00 | 2.86453e+02 | 5.00124e+00 | +---------------+-------------------+-----------------------+-------------+ Warning ------- :func:`.ld_score` will fail if ``entry_expr`` results in any missing values. The special float value ``nan`` is not considered a missing value. **Further reading** For more in-depth discussion of LD scores, see: - `LD Score regression distinguishes confounding from polygenicity in genome-wide association studies (Bulik-Sullivan et al, 2015) <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4495769/>`__ - `Partitioning heritability by functional annotation using genome-wide association summary statistics (Finucane et al, 2015) <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4626285/>`__ Notes ----- `entry_expr`, `locus_expr`, `coord_expr` (if specified), and `annotation_exprs` (if specified) must come from the same MatrixTable. Parameters ---------- entry_expr : :class:`.NumericExpression` Expression for entries of genotype matrix (e.g. ``mt.GT.n_alt_alleles()``). locus_expr : :class:`.LocusExpression` Row-indexed locus expression. radius : :obj:`int` or :obj:`float` Radius of window for row values (in units of `coord_expr` if set, otherwise in units of basepairs). coord_expr: :class:`.Float64Expression`, optional Row-indexed numeric expression for the row value used to window variants. By default, the row value is given by the locus position. annotation_exprs : :class:`.NumericExpression` or :obj:`list` of :class:`.NumericExpression`, optional Annotation expression(s) to partition LD scores. Univariate annotation will always be included and does not need to be specified. block_size : :obj:`int`, optional Block size. Default given by :meth:`.BlockMatrix.default_block_size`. Returns ------- :class:`.Table` Table keyed by `locus_expr` with LD scores for each variant and `annotation_expr`. The function will always return LD scores for the univariate (all SNPs) annotation.""" mt = entry_expr._indices.source mt_locus_expr = locus_expr._indices.source if coord_expr is None: mt_coord_expr = mt_locus_expr else: mt_coord_expr = coord_expr._indices.source if not annotation_exprs: check_mts = all([mt == mt_locus_expr, mt == mt_coord_expr]) else: check_mts = all( [mt == mt_locus_expr, mt == mt_coord_expr] + [mt == x._indices.source for x in wrap_to_list(annotation_exprs)] ) if not check_mts: raise ValueError("""ld_score: entry_expr, locus_expr, coord_expr (if specified), and annotation_exprs (if specified) must come from same MatrixTable.""") n = mt.count_cols() r2 = hl.row_correlation(entry_expr, block_size) ** 2 r2_adj = ((n - 1.0) / (n - 2.0)) * r2 - (1.0 / (n - 2.0)) starts, stops = hl.linalg.utils.locus_windows(locus_expr, radius, coord_expr) r2_adj_sparse = r2_adj.sparsify_row_intervals(starts, stops) r2_adj_sparse_tmp = new_temp_file() r2_adj_sparse.write(r2_adj_sparse_tmp) r2_adj_sparse = BlockMatrix.read(r2_adj_sparse_tmp) if not annotation_exprs: cols = ['univariate'] col_idxs = {0: 'univariate'} l2 = r2_adj_sparse.sum(axis=1) else: ht = mt.select_rows(*wrap_to_list(annotation_exprs)).rows() ht = ht.annotate(univariate=hl.literal(1.0)) names = [name for name in ht.row if name not in ht.key] ht_union = Table.union(*[ (ht.annotate(name=hl.str(x), value=hl.float(ht[x])).select('name', 'value')) for x in names ]) mt_annotations = ht_union.to_matrix_table(row_key=list(ht_union.key), col_key=['name']) cols = mt_annotations.key_cols_by()['name'].collect() col_idxs = {i: cols[i] for i in range(len(cols))} a_tmp = new_temp_file() BlockMatrix.write_from_entry_expr(mt_annotations.value, a_tmp) a = BlockMatrix.read(a_tmp) l2 = r2_adj_sparse @ a l2_bm_tmp = new_temp_file() l2_tsv_tmp = new_temp_file() l2.write(l2_bm_tmp, force_row_major=True) BlockMatrix.export(l2_bm_tmp, l2_tsv_tmp) ht_scores = hl.import_table(l2_tsv_tmp, no_header=True, impute=True) ht_scores = ht_scores.add_index() ht_scores = ht_scores.key_by('idx') ht_scores = ht_scores.rename({'f{:}'.format(i): col_idxs[i] for i in range(len(cols))}) ht = mt.select_rows(__locus=locus_expr).rows() ht = ht.add_index() ht = ht.annotate(**ht_scores[ht.idx]) ht = ht.key_by('__locus') ht = ht.select(*[x for x in ht_scores.row if x not in ht_scores.key]) ht = ht.rename({'__locus': 'locus'}) return ht