Table Tutorial

Table is Hail’s distributed analogue of a data frame or SQL table. It will be familiar if you’ve used R or pandas, but Table differs in 3 important ways:

  • It is distributed. Hail tables can store far more data than can fit on a single computer.

  • It carries global fields.

  • It is keyed.

A Table has two different kinds of fields:

  • global fields

  • row fields

Importing and Reading

Hail can import data from many sources: TSV and CSV files, JSON files, FAM files, databases, Spark, etc. It can also read (and write) a native Hail format.

You can read a dataset with hl.read_table. It take a path and returns a Table. ht stands for Hail Table.

We’ve provided a method to download and import the MovieLens dataset of movie ratings in the Hail native format. Let’s read it!

  1. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets: History and Context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages. DOI=https://dx.doi.org/10.1145/2827872.

[1]:
import hail as hl
hl.init()
BokehJS 3.4.3 successfully loaded.
Running on Apache Spark version 3.5.0
SparkUI available at http://hostname-e7df4bc790:4040
Welcome to
     __  __     <>__
    / /_/ /__  __/ /
   / __  / _ `/ / /
  /_/ /_/\_,_/_/_/   version 0.2.134-952ae203dbbe
LOGGING: writing to /io/hail/python/hail/docs/tutorials/hail-20250307-1210-0.2.134-952ae203dbbe.log
[2]:
hl.utils.get_movie_lens('data/')
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.spark.util.SizeEstimator$ (file:/usr/local/lib/python3.9/dist-packages/pyspark/jars/spark-core_2.12-3.5.0.jar) to field java.nio.charset.Charset.name
WARNING: Please consider reporting this to the maintainers of org.apache.spark.util.SizeEstimator$
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
[3]:
users = hl.read_table('data/users.ht')

Exploring Tables

The describe method prints the structure of a table: the fields and their types.

[4]:
users.describe()
----------------------------------------
Global fields:
    None
----------------------------------------
Row fields:
    'id': int32
    'age': int32
    'sex': str
    'occupation': str
    'zipcode': str
----------------------------------------
Key: ['id']
----------------------------------------

You can view the first few rows of the table using show.

10 rows are displayed by default. Try changing the code in the cell below to users.show(5).

[5]:
users.show()
id
age
sex
occupation
zipcode
int32int32strstrstr
124"M""technician""85711"
253"F""other""94043"
323"M""writer""32067"
424"M""technician""43537"
533"F""other""15213"
642"M""executive""98101"
757"M""administrator""91344"
836"M""administrator""05201"
929"M""student""01002"
1053"M""lawyer""90703"

showing top 10 rows

You can count the rows of a table.

[6]:
users.count()
[6]:
943

You can access fields of tables with the Python attribute notation table.field, or with index notation table['field']. The latter is useful when the field names are not valid Python identifiers (if a field name includes a space, for example).

[7]:
users.occupation.describe()
--------------------------------------------------------
Type:
        str
--------------------------------------------------------
Source:
    <hail.table.Table object at 0x7f6b286e2fd0>
Index:
    ['row']
--------------------------------------------------------
[8]:
users['occupation'].describe()
--------------------------------------------------------
Type:
        str
--------------------------------------------------------
Source:
    <hail.table.Table object at 0x7f6b286e2fd0>
Index:
    ['row']
--------------------------------------------------------

users.occupation and users['occupation'] are Hail Expressions

Lets peak at their using show. Notice that the key is shown as well!

[9]:
users.occupation.show()
id
occupation
int32str
1"technician"
2"other"
3"writer"
4"technician"
5"other"
6"executive"
7"administrator"
8"administrator"
9"student"
10"lawyer"

showing top 10 rows

Exercise

The movie dataset has two other tables: movies.ht and ratings.ht. Load these tables and have a quick look around.

[ ]: