
Creating MatrixTables

MatrixTables

hl.read_matrix_table('path/file.mt')
Read in a hail formatted MatrixTable file.

hl.utils.range_matrix_table(20, 10)
Create a MatrixTable with 20 rows and 10 columns.

hl.from_rows_table(ht)
Create a MatrixTable with no columns from a table.

hl.import_vcf('path/foo.vcf.bgz')
Import a VCF file to create a variant by sample 

matrix table.

https://hail.is/docs/0.2/hail.MatrixTable.html

Exploring MatrixTables
mt.describe()

Print information about the types of each field 
mt.summarize()

Basic descriptive statistics for each field
mt.count()

# of rows and columns in MatrixTable.
mt.show(n)

Print first n rows of table (forces computation!)
mt.n_partitions()
Check how many partitions are in this matrix table
mt.head(n)
Subset the matrix table to the first n rows.
mt.tail(n)

Subset the matrix table to the last n rows.

MatrixTables vs Tables

row_key r1 r2

col_key
c1
c2

A MatrixTable is a Table with an extra dimension. Tables have row fields and globals, whereas MatrixTables have row fields, column 
fields, entry fields, and globals. Many methods on tables have three equivalents on MatrixTables. For instance, filter on a Table has 
equivalents filter_rows, filter_columns, and filter_entries on a MatrixTable.

mt.rows()
Get just the row fields as a table
mt.annotate_rows(r3 = mt.r1 + 

mt.r2)
Add new row field r3 based on other row 

fields.
mt.transmute_rows(r1_sq = 

mt.r1 ** 2)
Like annotate_rows, but drops 

referenced fields.

mt.cols()
Get just the column fields as a table
mt.annotate_cols(cf3=mt.cf1**2)
Add new column fields.
mt.transmute_cols(cf1_half =         

mt.cf1 / 2)
Like annotate_columns, but deletes 

referenced fields.

mt.entries()
Flatten the matrix tables entry fields, row 

fields, and column fields into one giant table 
(expensive!!!)
mt.annotate_entries(e3 = mt.e1*2)
Create a new entry field for every entry in 

the MatrixTable (can be based on row and 
column fields) 

g1 g2 g3mt.globals
Get a struct containing global fields. 
mt.globals_table()
Get the global fields as a single row table
mt.annotate_globals(g4=2*mt.g2)

Add new global fields.

Globals
Global fields represent information constant across all entries.

mt.transmute_globals(g2_sq=2*mt.g2)
Like annotate_globals, but deletes referenced 

fields.
mt.select_globals(mt.g1, g4="foo")

Select existing or create new global fields, 
dropping the rest.

Rows
Row fields represent information constant across an entire row of 
entries. MatrixTables are distributed by row.

mt.filter_rows(~hl.is_nan(mt.r1))
Filters out rows/entries for which given 

expression is false.
mt.select_rows(mt.r1, mt.r2, 
r3=hl.coalesce(mt.r1, mt.r2))

Select existing or create new row fields, 
dropping the rest.
mt.sample_rows(p) 

Randomly downsample rows by keeping 
each row with probability p.

Columns
Column fields represent information constant across an entire column 
of entries.

mt.filter_cols(hl.is_defined(mt.r1)))
Filters out columns/entries for which given 

expression is false.
mt.select_cols(mt.c2,      

sum=mt.c2+mt.c1)
Select existing or create new col fields, 

dropping the rest.
mt.sample_cols(p)
Randomly downsample columns by keeping each 

column with probability p.

Entries
Entry fields are index by row and column. Each entry is a struct of 
potentially many fields.

{
"e1": 3,
"e2": "red",
....

}

mt.transmute_entries(e3=mt.e1*2)
Like annotate_entries, but drops referenced 

entry fields.
mt.filter_entries(mt.e1 > 4)
Filters out entries for which given expression 

is false.
mt.select_entries(mt.e1,  

e2_len=hl.len(mt.e2))
Select existing or create new entry fields, 

dropping the rest.

Writing MatrixTables
mt.write('path/output_file.mt', 

overwrite=True)
Write out a file in hail's MatrixTable format, overwriting 

any already existing file (by default, doesn't overwrite).

mt = mt.checkpoint('path/output_file.mt')
Combines mt.write and hl.read_matrix_table

into one operation by writing and then immediately 
reading back in. Good to break up complicated 
procedures.

hl.export_vcf(mt, 'path/output.vcf.bgz')
Exports a file keyed by locus (tlocus) and alleles (tarray

of tstr) to a VCF file.



Aggregations
The three aggregate methods work across the matrix 
table and produce a local python value. 
mt.aggregate_rows(hl.agg.counter(mt.rf1))

Aggregate over row fields, can also reference globals.

The annotation methods over rows and columns also support aggregations over 
entries within each row/column.

Combining Datasets

mt1.union_rows(mt2)
Combines rows of datasets with same column fields/keys.

Union MatrixTables

mt1.union_cols(mt2)
Combines cols of datasets with same row fields/keys.

mt1.annotate_rows(foo=ht2[mt1.key].foo)
Joins the field of table ht2 called foo onto mt1's rows.

mt1.annotate_cols(**ht2[mt1.key])
Joins all of the fields of table ht2 onto mt1's columns keeping 

the same names they had (** is used to get all fields).

Join Tables onto MatrixTables

mt.annotate_rows(sum_of_ef1_by_row=hl.agg.sum(mt.ef1)) 
Aggregate along each row of entries to create a new row annotation. Can 

reference column and entry fields in aggregations.

mt.annotate_cols(sum_of_ef1_by_col=hl.agg.sum(mt.ef1))
Aggregate along each column of entries to create a new col annotation. 

Can reference row and entry fields in aggregations.

mt1.annotate_entries(foo = mt2[mt1.row_key, 
mt1.col_key].ef)

Joints the entry field named ef of mt2 onto mt1, renaming 
it foo in the process.

mt.aggregate_entries(hl.agg.counter(mt.ef1))
Aggregate over entry fields, can also reference row, 

column, and global fields.

mt.aggregate_cols(hl.agg.counter(mt.cf1))
Aggregate over column fields, can also reference 

globals.

{"a": 5, ...}

{"c": 9, ...}

{"q": 1, ...}

Keying
MatrixTables can be joined with tables on their row key or column key. To key:

mt.key_rows_by(mt.rf1, mt.rf2)
Keys the row by row fields rf1 and rf2.

mt.key_cols_by(mt.cf1)
Keys the column by col field cf1.


