MatrixTables vs Tables

9 .
., A MatrixTable is a Table with an extra dimension. Tables have row fields and globals, whereas MatrixTables have row fields, column
4 I x fields, entry fields, and globals. Many methods on tables have three equivalents on MatrixTables. For instance, filter on a Table has

equivalents filter_rows, filter_columns, and filter_entries on a MatrixTable.

https://hail.is/docs/0.2/hail.MatrixTable.html

Globals Columns
Global fields represent information constant across all entries. Columr_m fields represent information constant across an entire column
col_key of entries.
mt.globals mt.transmute_globals(g2_sq=2*mt.g2)| g1l g2 g3 ci_ mt.cols() mt.filter_cols(hl.is_defined(mt.r1)))
Get a struct containing global fields. Like annotate_globals, but deletes referenced Get just the column fields as a table Filters out columns/entries for which given
mt.globals_table() fields. c2 mt.annotate_cols(cf3=mt.cf1**2) expression is false.
Get the global fields as a single row table mt.select_globals(mt.gl, g4="foo") Add new column fields. mt.select_cols(mt.c2,
mt.annotate_globals(g4=2*mt.g2) Select existing or create new global fields, mt.transmute_cols(cfl_half = sum=mt.c2+mt.c1)
Add new global fields. dropping the rest. row_key rl r2 mt.cfl / 2) Select existing or create new col fields,
Like annotate_columns, but deletes dropping the rest.
referenced fields. mt.sample_cols(p)
Randomly downsample columns by keeping each
column with probability p.
Rows 40 2 Entries
Row fields represent information constant across an entire row of Entry fields are index by row and column. Each entry is a struct of
entries. MatrixTables are distributed by row. potentially many fields.
mt . rows () mt.entries() mt.transmute_entries(e3=mt.el*2)

mt.filter_rows(~hl.is_nan(mt.r1))

Get just the row fields as a table
) Filters out rows/entries for which given

mt.annotate_rows(r3 = mt.rl +

Flatten the matrix tables entry fields, row Like annotate_entries, but drops referenced
fields, and column fields into one giant table entry fields.

mt.r2) OISR, (expensive!!l) mt.filter_entries(mt.el > 4)
Add new row field r3 based on other row " select_rows(mt.rl, mt.r2, { mt.annotate_entries(e3 = mt.e1*2) Filtersout entries for which given expression
fields. s ..co.alesce(mt -rl, mt ..r‘2)) "el": 3, Create a new entry field for every entry in is false.
mt.transmute_rows(rl_sq = drSoeIeFt ex:tlng ol @RS sy [y s, "e2": "red", the MatrixTable (can be based on row and mt.select_entries(mt.el,
mt.rl ** 2) PPIng the rest. column fields) e2_len=hl.len(mt.e2))
Like annotate_rows, but drops mt.sample_rows(p) . } Select existing or create new entry fields,
referenced fields. Randomly downsample rows by keeping dropping the rest.

each row with probability p.

Creating MatrixTables Writing MatrixTables

Exploring MatrixTables

hl.read_matrix_table('path/file.mt") . ' . ' .
Read in a hail formatted MatrixTable file. mt.write(path/?utput_flle.mt s mt.describe()
overwrite=True) Print information about the types of each field
hl.utils.range _matrix_table(20, 10) Write out a file in hail's MatrixTable format, overwriting mt .summarize()
Create a MatrixTable with 20 rows and 10 columns. any already existing file (by default, doesn't overwrite). Basic descriptive statistics for each field
)) mt.count()
hl.from_rows_table(ht) mt = mt.checkpoint('path/output_file.mt") # of rows and columns in MatrixTable.
Create a MatrixTable with no columns from a table. _Combinesmt.write andhl.read_matrix_table mt.show(n)
into one operation by writing and then immediately Print first n rows of table (forces computation!)
hl.import_vcf('path/foo.vcf.bgz') reading back in. Good to break up complicated mt.n_partitions()
Import a VCF file to create a variant by sample procedures. Check how many partitions are in this matrix table
matrix table. . . mt.head(n)
{ J hl.export_vcf(mt, 'path/output.vcf.bgz') Subset the matrix table to the first n rows.
Exports a file keyed by locus (tlocus) and alleles (tarray mt.tail(n)
of tstr) to a VCF file. Subset the matrix table to the last n rows.

Aggregations

The three aggregate methods work across the matrix O
table and produce a local python value.
mt.aggregate_rows(hl.agg.counter(mt.rfl))
Aggregate over row fields, can also reference globals.
{"a":5, ...}

B B, .}

mt.aggregate_cols(hl.agg.counter(mt.cfl))
Aggregate over column fields, can also reference
globals.

mt.aggregate_entries(hl.agg.counter(mt.efl))

Aggregate over entry fields, can also referencerow, H [1]
I . {"g"™:1, ...}

column, and global fields.
The annotation methods over rows and columns also support aggregations over
entries within each row/column.

mt.annotate_rows(sum_of_efl by row=hl.agg.sum(mt.efl))

Aggregate along each row of entries to create a new row annotation. Can
reference column and entry fields in aggregations.

mt.annotate_cols(sum_of_efl_by col=hl.agg.sum(mt.efl))

Aggregate along each column of entries to create a new col annotation.
Can reference row and entry fields in aggregations.

Keying

MatrixTables can be joined with tables on their row key or column key. To key:

mt.key_rows_by(mt.rfl, mt.rf2)
Keys the row by row fields rfl and rf2.

mt.key_cols_by(mt.cfl)
Keys the column by col field cf1.

Combining Datasets

Union MatrixTables
O [

o m
|
mtl.union_rows(mt2)
Combines rows of datasets with same column fields/keys.
e I O e
|

mtl.union_cols(mt2)
Combines cols of datasets with same row fields/keys.
Join Tables onto MatrixTables

D [0 [
| |

mtl.annotate_rows(foo=ht2[mtl.key].foo0)

Joins the field of table ht2 called foo onto mtl's rows.

e i —
|
mtl.annotate_cols(**ht2[mtl.key])

Joins all of the fields of table ht2 onto mtl's columns keeping
the same names they had (** is used to get all fields).

D I = [[—
o+ - I

mtl.annotate_entries(foo

mt2[mtl.row_key,
mtl.col_key].ef)
Joints the entry field named ef of mt2 onto mtl, renaming
it foo in the process.

